2018-4-5

Imaging biomarker for molecular oncology: focusing on HER2 evaluation

ILHAN LIM MD, PhD

Department of Nuclear Medicine Korea Cancer Center Hospital (원자력병원) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea

Contents

- New paradigm of Precision medicine
- Advantage of Imaging biomarker
- Imaging biomarker in Breast cancer
 - Evaluation of HER2 expression

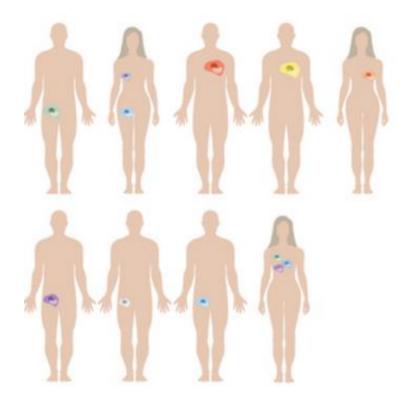
Pt with Lt hip joint pain

ER/PR/HER2 (3+/3+/3+)**ER/PR/HER2**

1

KIRAMS Korea Institute of Radiological and Medical Sciences • F/52

- CC; Lt. hip joint pain (onset; 10 MA)
- Sx started after slipping down at mountain
- Tx at Oriental medicine clinic for 7 M
- Imp) malignant bone tumor in Lt. pelvis
- Bone Bx

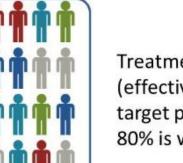

(-/-/3+)

Metastatic cancer

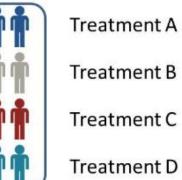
Courtesy of Dr. KimHA

Tumor heterogeneity

Intertumour heterogeneity


Burrell et al, Nature, 2013

Precision medicine


Patient population

Standard approach Tailored approach

Treatment

Treatment A (effective in 20% of target population; 80% is waste)

Iressa story

폐암환자, 장관집 시위…'이레사' 급여확대?

[2004년 02월 19일 11시 19분]

말기폐암에 걸린 한 환자가 김화중 보건복지부장관 집을 찾아 이레사 보험범위를 확대해 줄 것을 호소했고, 김 장관도 급여범위를 재검토하겠다고 약속했던 것으로 뒤늦게 알려졌다.

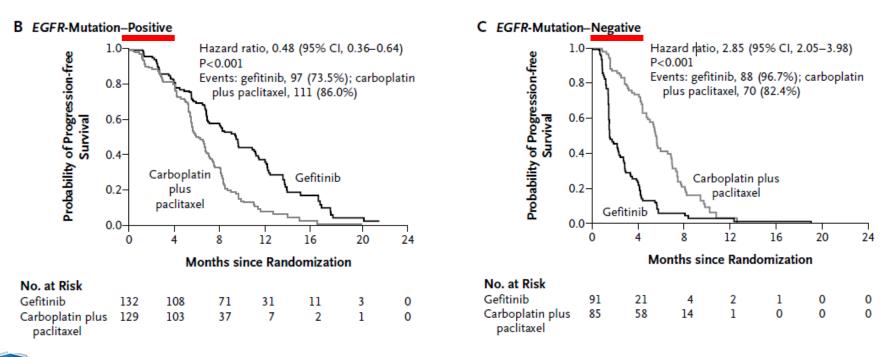
말기폐암환자 K씨는 암환자살리기운동본부에 가입한 회원으로 말기폐암치료제 '이레사'에 대한 요구가 수용 되지 않자 최근 답답한 마음을 억누르지 못하고 혼자 직접 김화중 장관의 자택을 항의 방문했던 것으로 전해 졌다.

그는 당초 복지부 보험급여과에 이레사의 보험확대를 요구했지만 별다른 소득을 얻지 못하자 김 장관에게 환 자들의 고충을 직접 전할 목적으로 김 장관 집 앞에서 무작정 기다린 것으로 알려졌다.

김화중 장관의 귀가가 늦어지면서 아쉽게도 면담을 하지 못하자 K씨는 이미 준비해 간 서류를 집사에게 전달 하고 발길을 돌렸다.

Lung ca Pt visited the Minister of Health to ask the reimbursement of Iressa.

The NEW ENGLAND JOURNAL of MEDICINE

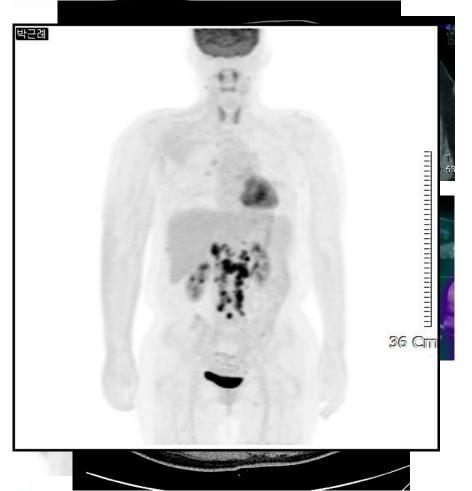

ESTABLISHED IN 1812

SEPTEMBER 3, 2009

VOL. 361 NO. 10

Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma

Tony S. Mok, M.D., Yi-Long Wu, M.D., F.A.C.S., Sumitra Thongprasert, M.D., Chih-Hsin Yang, M.D., Ph.D., Da-Tong Chu, M.D., Nagahiro Saijo, M.D., Ph.D., Patrapim Sunpaweravong, M.D., Baohui Han, M.D., Benjamin Margono, M.D., Ph.D., F.C.C.P., Yukito Ichinose, M.D., Yutaka Nishiwaki, M.D., Ph.D.,

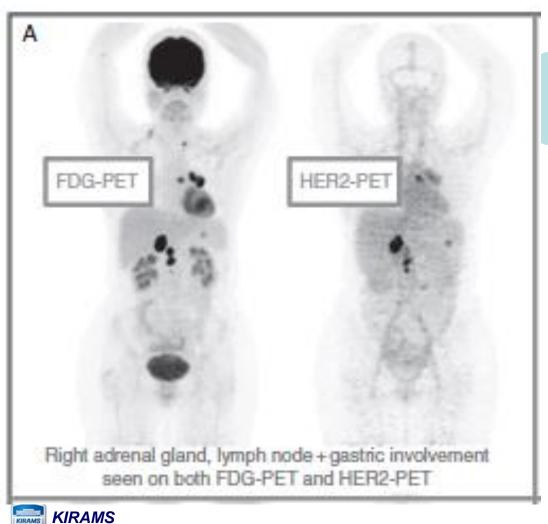

KIRAMS Korea Institute of Radiological and Medical Sciences

Mok et al, NEJM, 2009

Precision medicine

Patient population Treatment Standard approach Treatment A (effective in 20% of target population; 80% is waste) Tailored approach EGFR+ Treatme Treatment B Treatment C **EGFR-**Treatment D

Breast cancer Pt with Abd LN during F/U

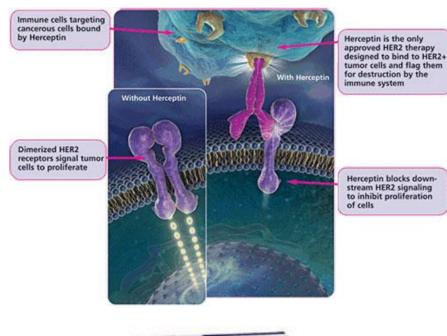

• F/48

- CC; Rt. Breast thickness (onset; 1 MA)
- 2014-7 Rt. NASSM+SLNB
 - T2N1M0
 - ER(-)/PR(-)/HER2(3+)/Ki-67(60%)
- 2014-8 ~ 2015-11 AC-TH, herceptin 1yr
- 2017-1 Rt. Axillary LN mass
- 2017-2 RTx: Rt. axilla + CTx
- 2017-6 Nipple areolar wide excision
 ER(-)/PR(-)/HER2(3+)/Ki-67(10%)
- 2018-1 Rt. Pleural effusion, Abd LN
 Pleural effusion malignant cell (-)
- Hx of NTM
- Metastases vs. NTM infection
- Laparoscopic Bx?

Courtesy of Dr. KimHA

KIRAMS Korea Institute of Radiological and Medical Sciences

Advantage of Imaging biomarker



Non-invasiveness

Gebhart et al, Ann Oncol, 2016

Korea Institute of Radiological and Medical Sciences

Human Epidermal growth factor Receptor 2 (HER2)

Korea Institute of Radiological and Medical Sciences

KIRAMS

- Epidermal growth factor receptor family
- Cell membrane surface-bound receptor tyrosine kinase
- 15-20 percent of breast cancers her2/neu overexpression
 - Increased disease recurrence and worse prognosis
- Incorrect result from IHC and FISH 20%
- In vivo evaluation of HER2 expression
 - Metastasis, Hard to Bx
 - Change after Tx

Olayiove et al, Breast cancer research,2001

Trastuzumab reimbursement in Korea

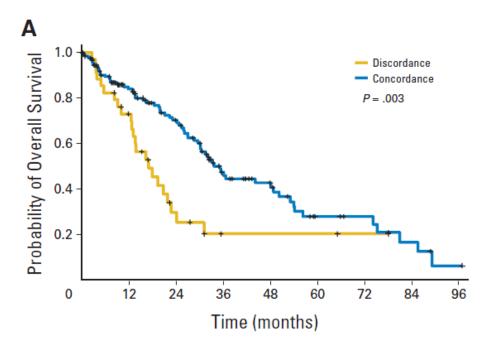
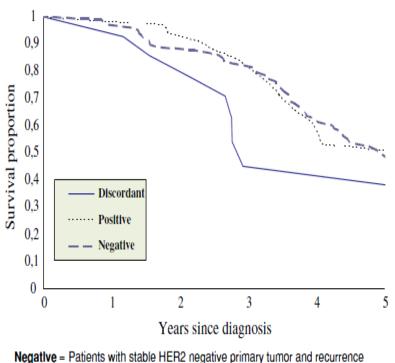

- HER2 test mandatory before Tx
- Metastatic breast cancer
 - Single Tx to previous chemotherapy Pt
 - Paclitaxel or Docetaxel combined therapy without previous chemotherapy
 - Aromatase inhibitor combined therapy to HR+ post menopausal Pt without trastuzumab Hx
- Early breast cancer
 - After chemotherapy (or RT)
 - Paclitaxel or Docetaxel combined therapy after adjuvant chemotherapy
- Metastatic stomach cancer

Table 3. Concordance Rat	tes by Clir	nical Fac	tors (all p	atients)	
	HER2 Status				
		Concordant (n = 139)		Discordant (n = 43)	
Subgroup	No.	%	No.	%	Р
Trastuzumab					
None	78	74	28	26	.296
Before biopsy	61	80	15	20	
Timing of metastasis diagnosis					
At presentation	30	88	4	12	.077
At recurrence	109	74	39	26	
Metastatic location					
Local	53	72	21	28	.212
Distant	86	80	22	20	
Hormone receptor status					
Positive	79	77	23	23	.865
Negative	58	74	20	26	
Unknown	2				
Chemotherapy with or without trastuzumab					
None	36	90	4	10	.022
Before biopsy	103	73	39	27	
Time from diagnosis of breast cancer to biopsy, years					
≤ 5	95	78	27	22	.498
> 5	44	73	16	27	
Years of breast cancer diagnosis					
1997-2004	102	76	32	24	.893
2005-2008	37	77	11	23	
	(n =	78)	(n =	28)	
Chemotherapy without trastuzumab*					
None	36	90	4	10	
Before biopsy	42	64	24	36	

Abbreviation: HER2, human epidermal growth factor receptor 2.

*Among 106 patients who had chemotherapy without trastuzumab, the total number of patients with HER2 status concordance was 78; total with discordance, 28.

Discordance of primary and metastatic tumor


- N=182, HER2+ primary tumor
- 43 Pt (24%) HER2 metastatic tumor
- Need for Bx of metastasis
 - Px
 - Targeted therapy

Niikura et al, JCO, 2012

HER2 status in a population-derived breast cancer cohort: discordances during tumor progression

Ulla Wilking · Eva Karlsson · Lambert Skoog · Thomas Hatschek · Elisabet Lidbrink · Goran Elmberger · Hemming Johansson · Linda Lindström · Jonas Bergh

- N=151
- 15 Pt (10%) HER2 change
 - 7/108 HER2- to HER2+
 - 8/43 HER2+ to HER2-
- HER2 stable
 - 101 HER2-
 - 35 HER2+

Positive = Patients with stable HER2 positive primary tumor and recurrence Discordant = Patients with a change in HER2 status between primary tumor and recurrence

Niikura et al, JCO, 2012

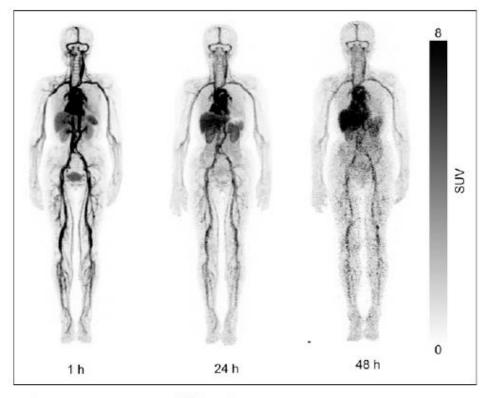
諸行無常 Everything is changing

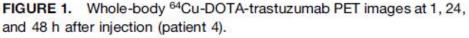
사랑은 움직이는 거야 Love is moving

⁶⁴Cu-DOTA-Trastuzumab PET Imaging in Patients with HER2-Positive Breast Cancer

Kenji Tamura¹, Hiroaki Kurihara², Kan Yonemori¹, Hitoshi Tsuda³, Junko Suzuki⁴, Yuzuru Kono², Natsuki Honda², Makoto Kodaira¹, Harukaze Yamamoto¹, Mayu Yunokawa¹, Chikako Shimizu¹, Koki Hasegawa⁵, Yousuke Kanayama⁵, Satoshi Nozaki⁵, Takayuki Kinoshita⁴, Yasuhiro Wada⁵, Shusaku Tazawa⁵, Kazuhiro Takahashi⁵, Yasuyoshi Watanabe⁵, and Yasuhiro Fujiwara¹

¹Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; ²Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan; ³Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan; ⁴Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan; and ⁵RIKEN Center for Molecular Imaging Science, Hyogo, Japan


Patient no.	Age (y)		Stage	HER2 expression (FISH score)	Interval from CNB to ⁶⁴ Cu (mo)		No. of lesions visualized by MR imaging/CT/64Cu		Days from trastuzumab treatment to imaging
1	73	IDC-st	IV	3+	20	M, brain	6/4/4	Weekly	1 d
2	42	IDC-SC	IIB	3+	11	P, 2.3 × 2.1	NA/1/1	Triweekly	20 d
3	49	Lobular	IIA	2+ (3.9)	3	P, 2.0 × 2.0	NA/1/1	_	—
4	75	IDC-SC	IV	3+	10	M, brain	1/0/1	Weekly	1 d
5	55	IDC-st	IIA	3+	22	P, 3.5 × 3.5	NA/1/1	Triweekly	8 d
6	45	IDC-SC	IV	3+	1	M, hilar node	NA/1/1	_	_


 $CNB = core-needle biopsy; {}^{64}Cu = {}^{64}Cu-DOTA-trastuzumab PET; IDC-st = invasive ductal carcinoma-solid tubular; IDC-SC = invasive ductal carcinoma-scirrhous; M = metastatic breast cancer; P = primary breast cancer; NA = not applied within 1 mo before or after {}^{64}Cu-DOTA-trastuzumab PET imaging; weekly = 2 mg/kg/wk; triweekly = 8 mg/kg/3 wk.$

Tamura et al, JNM,2013

PET imaging and analysis

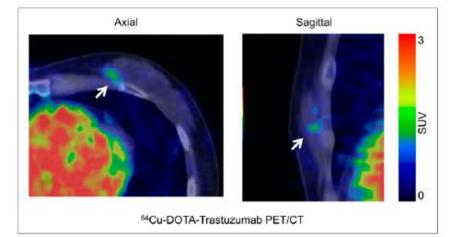
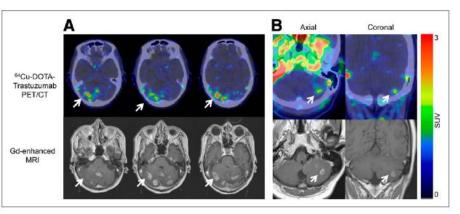



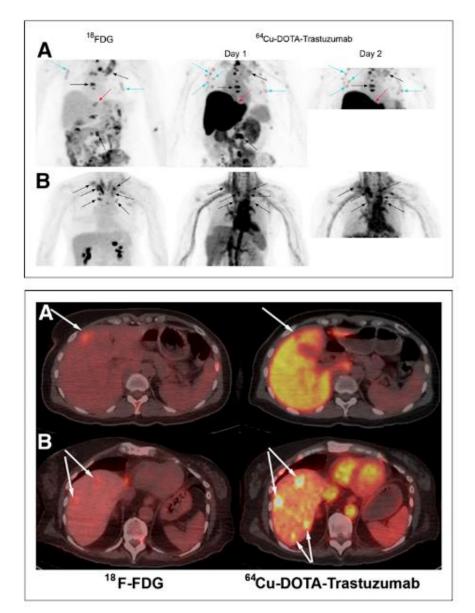
FIGURE 3. ⁶⁴Cu-DOTA-trastuzumab PET images of HER2-positive primary breast tumor. Arrows show primary breast tumor in patient 3. Red regions indicate high uptake ⁶⁴Cu-DOTA-trastuzumab in heart and blood vessels.

Functional Imaging of Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Using ⁶⁴Cu-DOTA-Trastuzumab PET

Joanne E. Mortimer¹, James R. Bading², David M. Colcher², Peter S. Conti³, Paul H. Frankel⁴, Mary I. Carroll¹, Shan Tong², Erasmus Poku², Joshua K. Miles², John E. Shively⁵, and Andrew A. Raubitschek²

¹Department of Medical Oncology and Experimental Therapeutics, City of Hope, Duarte, California; ²Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute of the City of Hope, Duarte, California; ³Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California; ⁴Department of Information Sciences, City of Hope, Duarte, California; and ⁵Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California;

Mortimer et al, JNM,2014

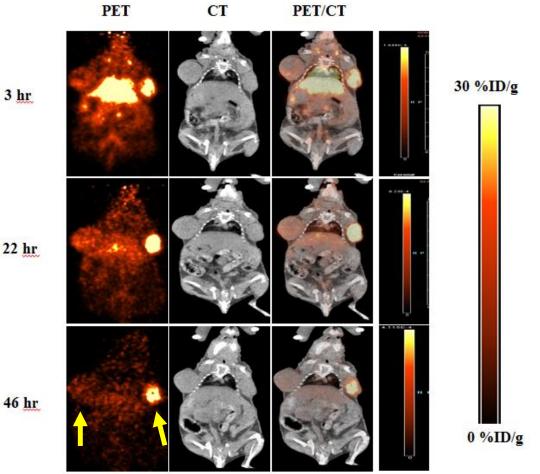

PET imaging

	Trastuzumab protein dose (mg)			
Characteristic	5	50	All patients	
No. of patients	2	6	8	
Age (y)				
Median	60	54	56	
Range	44-75	39-69	39-75	
Prior anti-HER2 therapy				
None		1	1	
Adjuvant trastuzumab	1	2	3 (14, 18, 18) [†]	
Trastuzumab for metastasis	1	3	4 (4, 6, 14, 18)†	
Hormone receptor and HER2 status of recurrent disease				
ER or PR positive	1	3	4	
ER and PR negative	1	3	4	
HER2		-		
IHC3+	2	5	7	
IHC2+/FISH positive		1	1	
Sites of metastatic disease				
Bone	2	4	6	
Lymph nodes	2	5	7	
Liver	2	2	4	
Lung	1	1	2	
Pleural effusion		1	1	
Breast		2	2	

*Entries are numbers of patients unless otherwise indicated. [†]Months since last anti-HER2 therapy administration.

KIRAMS

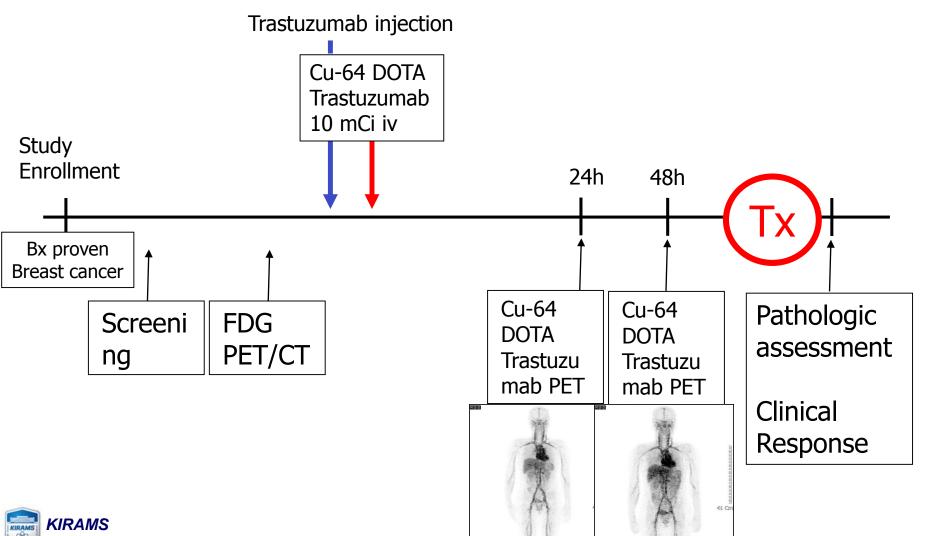
ER = estrogen receptor; PR = progesterone receptor; IHC = immunohistochemistry; FISH = fluorescence in situ hybridization.



PET imaging of breast cancer using a ⁶⁴Cu-DOTA-Trastuzumab for pharmacokinetics study: Microdose PET clinical trial

Korea Cancer Center Hospital Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea

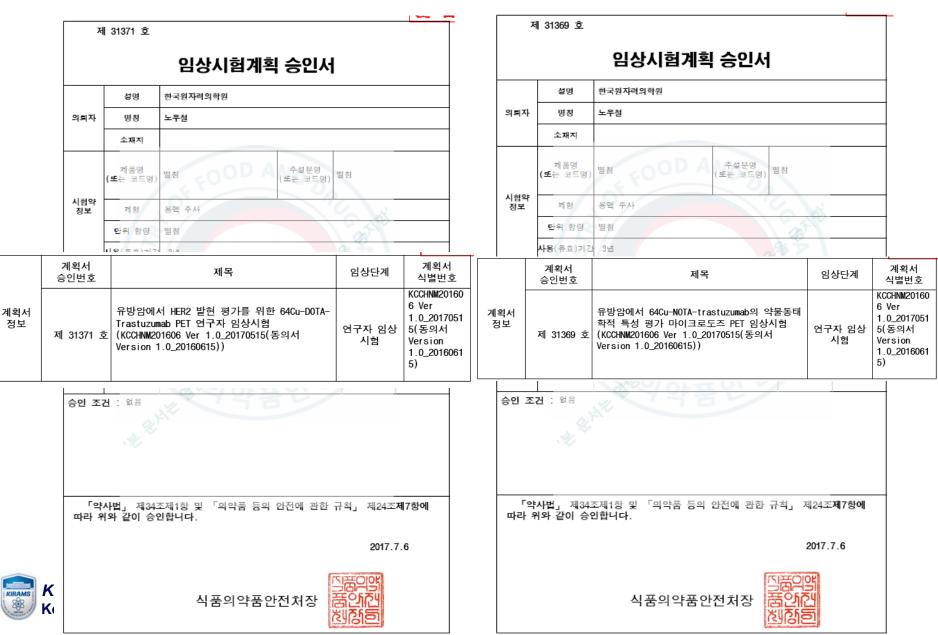
Cu-64 DOTA Trastuzumab



3 hr

22 hr

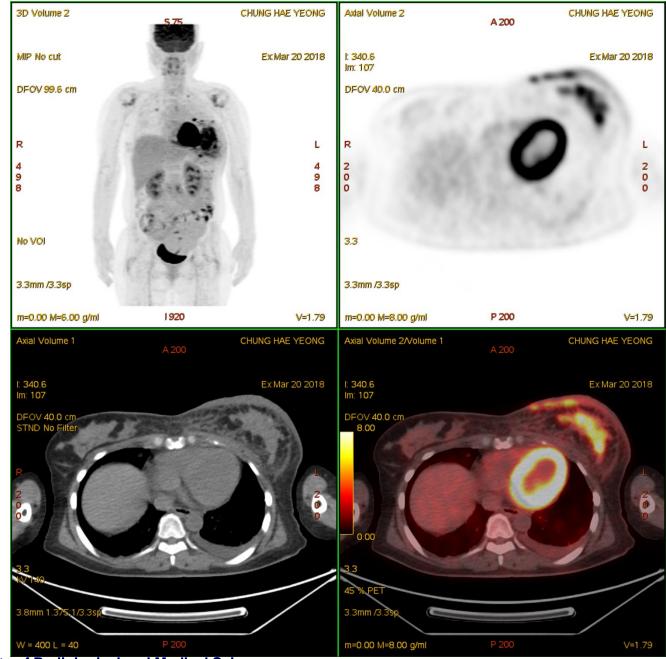
HER2+ HER2-**KIRAMS** Tumor Tumor Korea Institute of Radiological and Medical Sciences


Study protocol

Korea Institute of Radiological and Medical Sciences

2016-6-30 KFDA submission 2017-7-6 KFDA approval

KFDA approval

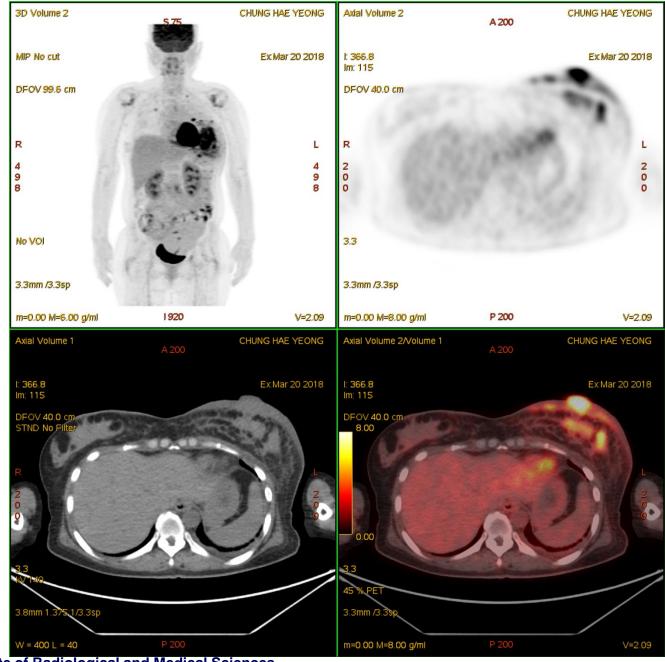

Case1

F/45

r/o bilateral breast cancer, c lung mets, cT4N2M1

- ER(+)/PR(+)/HER2(3+)/Ki-67(70%) (2017.04.24)
- s/p #8 herceptin, #5 perzeta ~2017.10
- # [PD] Lt. breast on P/E
- s/p #6 FEC ~2018.02
- serum HER2 52.1 (2018.03.07)

FDG PET/CT 2018.03.20

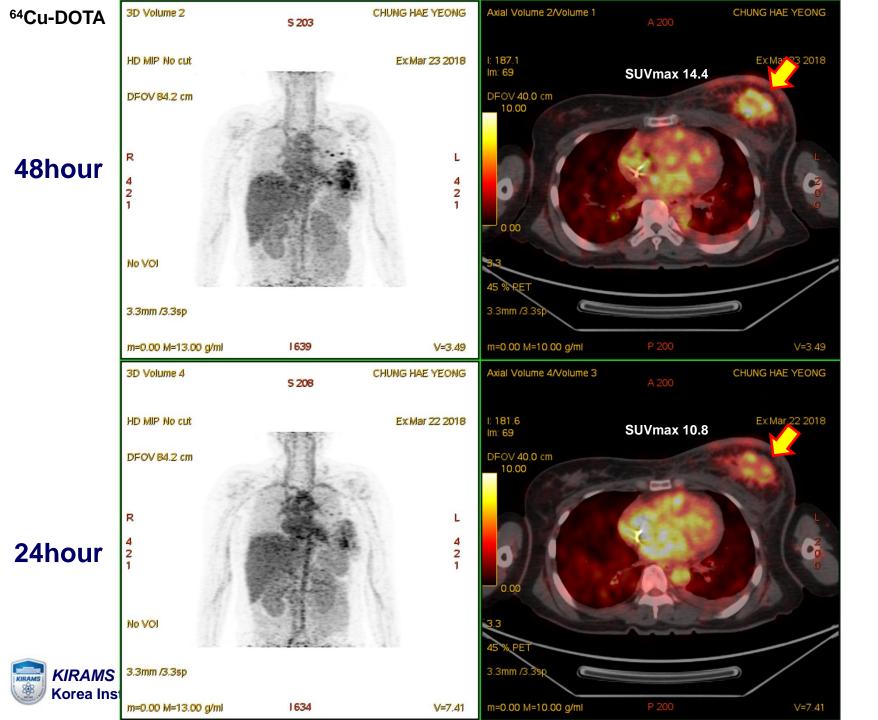


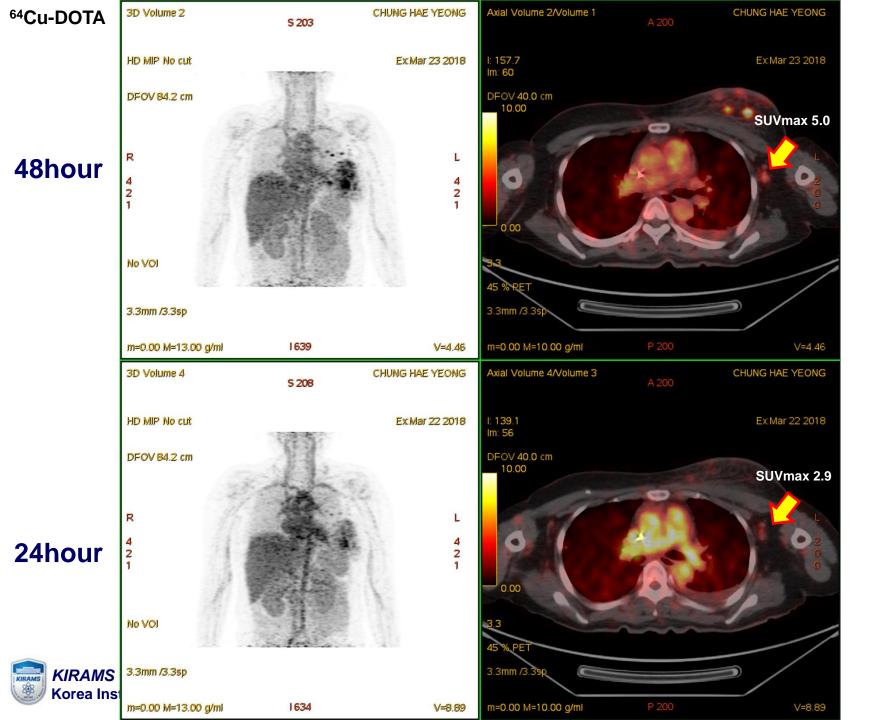
Korea Institute of Radiological and Medical Sciences

KIRAMS

KIRAMS

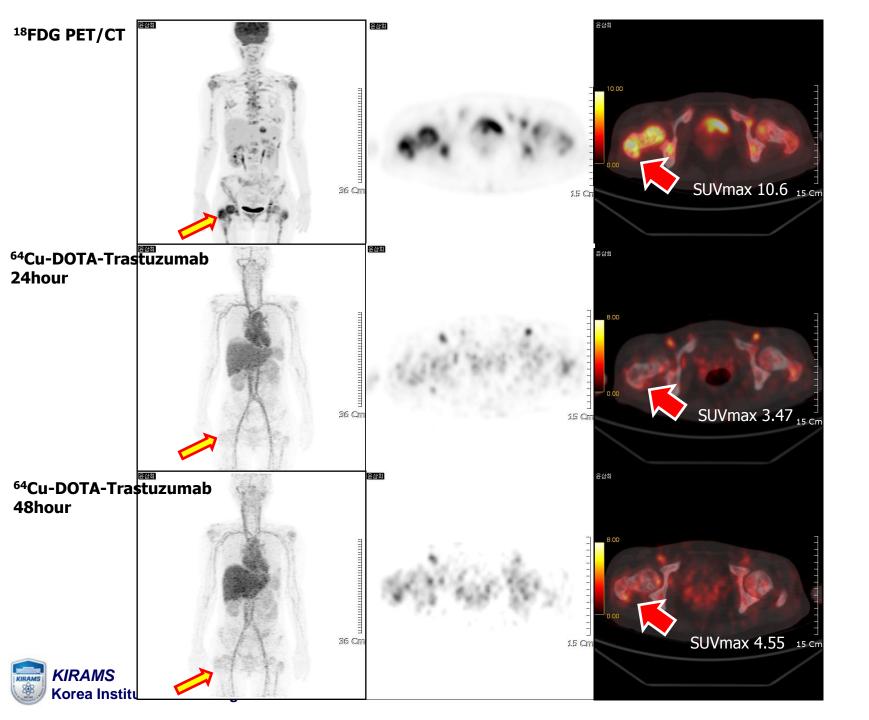
FDG PET/CT 2018.03.20





Korea Institute of Radiological and Medical Sciences

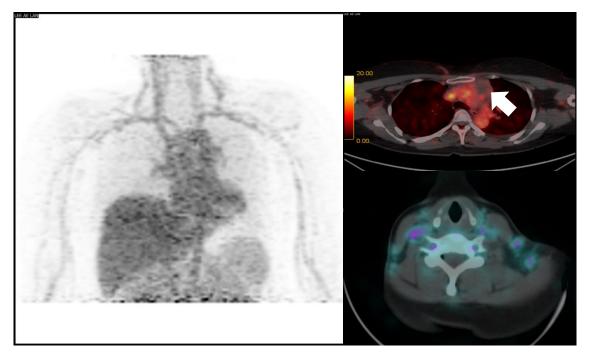
⁶⁴Cu-DOTA-Trastuzumab PET/CT



F/48 Metastatic breast cancer: bone&liver ER+/PR+/HER2 1+ Ki67 3%

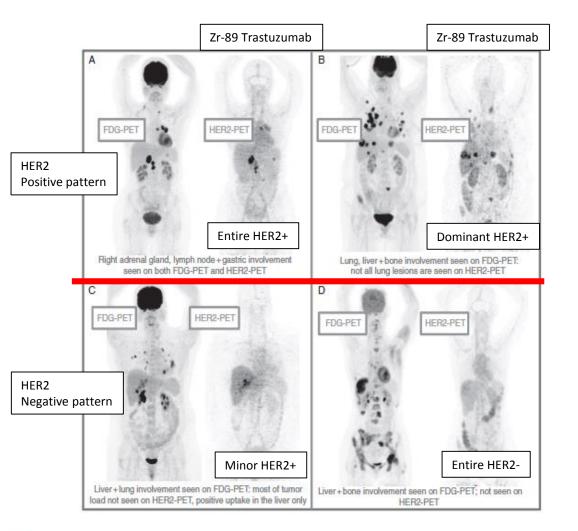
Case 3

F/44, Left breast cancer s/p BCS 2015.11 s/p Herceptin ~2017.05 ER(-)/PR(-)/HER2(3+)/Ki-67(60%)

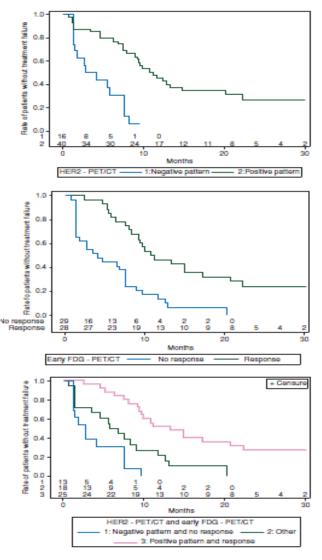

New mediastinal LN

Lt. supraclavicular LN - Bx: Mets HER2+++

FDG PET/CT

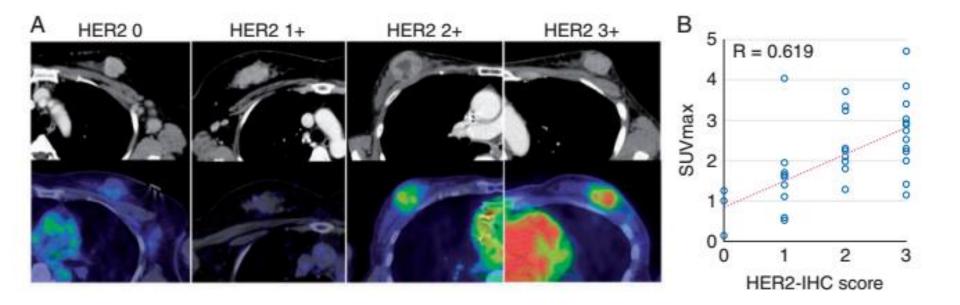


Cu-64 DOTA-trastuzumab



and Medical Sciences

Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial

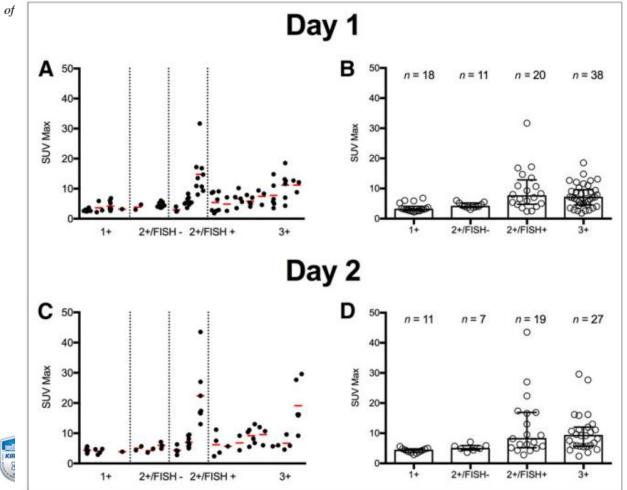


Gebhart et al, Ann Oncol, 2016

⁶⁴Cu-DOTA-trastuzumab PET imaging for HER2-specific primary lesions of breast cancer

S. Sasada¹, H. Kurihara², T. Kinoshita³, M. Yoshida⁴, N. Honda², T. Shimoi¹, A. Shimomura¹, M. Yunokawa¹, K. Yonemori¹, C. Shimizu¹, A. Hamada⁵, Y. Kanayama⁶, Y. Watanabe⁶, Y. Fujiwara¹ & K. Tamura^{1*}

Departments of ¹Breast and Medical Oncology; ²Diagnostic Radiology; ³Breast Surgery; ⁴Pathology and Clinical Laboratories, National Cancer Center Hospital; ⁵Division of Molecular Pharmacology and Pharmacokinetics, National Cancer Center Research Institute, Tokyo; ⁶RIKEN Center for Life Science Technologies, Hyogo, Japan (*E-mail: ketamura@ncc.go.jp)



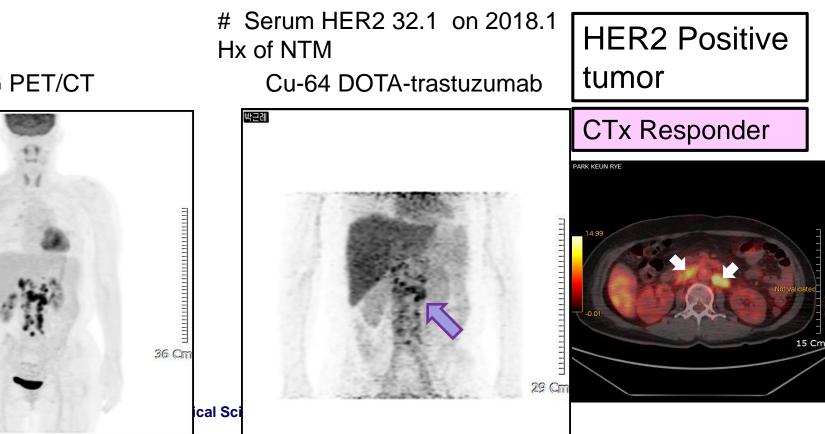
Sasada et al, Annal Oncol, 2017

Tumor Uptake of ⁶⁴Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer

Joanne E. Mortimer¹, James R. Bading¹, Jinha M. Park², Paul H. Frankel³, Mary I. Carroll¹, Tri T. Tran², Erasmus K. Poku⁴, Russell C. Rockne³, Andrew A. Raubitschek⁴, John E. Shively⁵, and David M. Colcher⁴

¹Department of Medical Oncology and Experimental Therapeutics, City of Hope, Duarte, California; ²Department of Radiology, City of Hope, Duarte, California; ³Department of Information Sciences, City of Hope, Duarte, California; ⁴Department of Cancer Immunotherapy and Tumor Immunology Reckman Research Institute of the City of Hope, Duarte, California: and ⁵Department

Mortimer et al, JNM, 2018


Evaluation of HER2 expression using imaging biomarker

- Need to assess HER2 expression non-invasively
- HER2 expression heterogeneity
 - Metastatic lesion
 - Temporal
- Cu-64 DOTA Trastuzumab
 - Uptake at HER2 positive metastatic breast ca
 - Imaging timing; 1 D, 2D after injection
 - Trastuzumab predosing favorable
 - Well correlated with IHC
- Zr-89 DOTA Trastuzumab
 - Proper half life for Ab (3.3 d)
 - Response of TDM-1

Breast cancer Pt with Abd LN during F/U

F/48, Right breast cancer # ER(-)/PR(-)/HER2(3+)/Ki-67(60%) s/p Right NACSSM+SLNB 2014.07 s/p AC-TH -> Herceptin

Regional recurrence, right axillary LNs on 2017.01.16 s/p RTx: right axilla s/p CTx, palliative wide excision of NAC ER(-)/PR(-)/HER2(3+)/Ki-67(10%)

FDG PET/CT

박근례

Acknowledgment

Korea Institute of Radiological and Medical Sciences (KIRAMS)

Korea Cancer Center Hospital

Breast cancer center

Woo Chul Noh Hyun-Ah Kim Min Ki Sung Seung Sook Lee Hye Sil Sul Jae Kyung Myung Ko Woon Park Sun Ah Chang

Molecular Imaging Research Center

Joo Hyun Kang Kwang II Kim Chang Kyun Ahn Seung Bum Choi Jae Hyung Kim

Korea Cancer Center Hospital

Department of Nuclear Medicine

Inki Lee Byung Hyun Byun Byung II Kim Chang Woon Choi Sang Moo Lim

Thank you for your attention

KIRAMS Korea Institute of Radiological an